Národní úložiště šedé literatury Nalezeno 12 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Characterization of functions with zero traces via the distance function
Turčinová, Hana ; Nekvinda, Aleš (vedoucí práce) ; Edmunds, David Eric (oponent)
Necht' Ω ⊂ RN je oblast s lipschitzovskou hranicí, d(x) = dist(x, ∂Ω) je funkce vzdálenosti od hranice Ω a p ∈ (1, ∞). Známá charakterizace prostoru funkcí s nu- lovou stopou říká, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ Lp (Ω) a zároveň ∇u ∈ Lp (Ω). Tento výsledek byl v poslední době několikrát vylepšen v tom smyslu, že podmínka u/d ∈ Lp (Ω) byla postupně zeslabována. Bylo dokázáno, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ L1 (Ω) a zároveň ∇u ∈ Lp (Ω). Zatím nejlepší výsledek v tomto směru lze nalézt v autorčině bakalářské práci, kde je dokázáno, že podmínku u/d ∈ Lp (Ω) je možné zeslabit až na u/d ∈ L1,p (Ω), ovšem pouze v případě, kdy N = 1. V této diplomové práci dokážeme, že pro libovolnou dimenzi N ≥ 1, a každá p ∈ (1, ∞) a q ∈ [1, ∞) platí u ∈ W1,p 0 (Ω) právě tehdy, když u/d ∈ L1,q (Ω) a ∇u ∈ Lp (Ω). Na závěr pomocí protipříkladu ukážeme, že naši podmínku není možné nahradit podmínkou u/d ∈ L1,∞ (Ω). 1
Diferencovatelnost inverzního zobrazení
Konopecký, František ; Hencl, Stanislav (vedoucí práce) ; Honzík, Petr (oponent)
V práci dokazujeme výsledek, že pokud pro ∈ ℕ a ≥ 1 bilipschitzovské zobrazení náleží do +1, loc ∩ ,∞ loc , tak náleží do +1, loc i jeho inverze −1 . Obdobné tvrzení dokazujeme i pro prostory loc. K tomuto účelu je v práci vybudováno nové uspořádání -tých parciálních derivací do zobecněné Jakobiho matice, díky níž můžeme vhodně deri- vovat matice. Zobecněná Jakobiho matice je navržena tak, aby bylo zachováno řetízkové pravidlo a bylo možné derivovat i součin matic. 1
Sobolevova věta o vnoření na oblastech s nelipschitzovskou hranicí
Roskovec, Tomáš ; Hencl, Stanislav (vedoucí práce) ; Honzík, Petr (oponent)
V práci studujeme Sobolevovu větu o vnoření. Pro oblast s lipschit- zovskou hranicí platí f ∈ W1,p ⇒ f ∈ Lp∗ (p) , kde p∗ (p) = np n − p . Funkce p∗ (p) je jako funkce proměnné p spojitá a diferencovatelná. V práci je zkonstruován příklad oblasti, pro kterou je nejlepší funkce vnoření p∗ (p) dokonce nespojitá. V první části se podle náznaku z článku [1] zkonstruuje množina s narušením spojitosti v bodě p = n = 2 a důkaz vztahu je proveden vlastními, jednoduššími metodami. Nakonec představíme ideu, jakou lze tento příklad zo- becnit k nalezení oblasti s bodem nespojitosti mimo bod p = n = 2.
Properties of weakly differentiable functions and mappings
Kleprlík, Luděk
V předložené práci studujeme optimální podmínky na homeomorfis- mus f : Ω → Rn , která nám zaručí, že složení u ◦ f je slabě diferenco- vatelné a slabá derivace patří do nějakého vhodného prostoru funkcí. Ukážeme, má-li f konečnou distorzi a q-distorze Kq = |Df|q /Jf je dostatečně integrovatelná, potom operátor složení Tf (u) = u ◦ f zo- brazuje funkce z W1,q loc do prostoru W1,p loc a navíc platí známé řetízkové pravidlo. Pro důkaz tohoto tvrzení budeme muset nejdříve zjistit, kdy inverzní zobrazení f−1 zobrazuje množiny nulové míry na množiny nulové míry (tj. splňuje Luzinovu (N−1 ) podmínku). Ukážeme op- timální podmínky pro Sobolev-Lorentzův prostor WLn,q a pro Sobolev Orliczův prostor WLq log L, kde q ≥ n a α > 0 nebo 1 < q ≤ n a α < 0. Nalezneme také nutnou podmínku na homeomorfismus f pro funkce s derivací v prostoru funkcí invariantnímu vůči nerostoucímu přerovnání X blízko k Lq , t.j. X je q-škálující. 1
Diferencovatelnost inverzního zobrazení
Konopecký, František ; Hencl, Stanislav (vedoucí práce)
V práci dokazujeme výsledek, že pokud pro ∈ ℕ a ≥ 1 bilipschitzovské zobrazení náleží do +1, loc ∩ ,∞ loc , tak náleží do +1, loc i jeho inverze −1 . Obdobné tvrzení dokazujeme i pro prostory loc. K tomuto účelu je v práci vybudováno nové uspořádání -tých parciálních derivací do zobecněné Jakobiho matice, díky níž můžeme vhodně deri- vovat matice. Zobecněná Jakobiho matice je navržena tak, aby bylo zachováno řetízkové pravidlo a bylo možné derivovat i součin matic. 1
Characterization of functions with zero traces via the distance function
Turčinová, Hana ; Nekvinda, Aleš (vedoucí práce) ; Edmunds, David Eric (oponent)
Necht' Ω ⊂ RN je oblast s lipschitzovskou hranicí, d(x) = dist(x, ∂Ω) je funkce vzdálenosti od hranice Ω a p ∈ (1, ∞). Známá charakterizace prostoru funkcí s nu- lovou stopou říká, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ Lp (Ω) a zároveň ∇u ∈ Lp (Ω). Tento výsledek byl v poslední době několikrát vylepšen v tom smyslu, že podmínka u/d ∈ Lp (Ω) byla postupně zeslabována. Bylo dokázáno, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ L1 (Ω) a zároveň ∇u ∈ Lp (Ω). Zatím nejlepší výsledek v tomto směru lze nalézt v autorčině bakalářské práci, kde je dokázáno, že podmínku u/d ∈ Lp (Ω) je možné zeslabit až na u/d ∈ L1,p (Ω), ovšem pouze v případě, kdy N = 1. V této diplomové práci dokážeme, že pro libovolnou dimenzi N ≥ 1, a každá p ∈ (1, ∞) a q ∈ [1, ∞) platí u ∈ W1,p 0 (Ω) právě tehdy, když u/d ∈ L1,q (Ω) a ∇u ∈ Lp (Ω). Na závěr pomocí protipříkladu ukážeme, že naši podmínku není možné nahradit podmínkou u/d ∈ L1,∞ (Ω). 1
Gradient polyconvexity and its application to problems of mathematical elasticity and plasticity
Zeman, Jiří ; Kružík, Martin (vedoucí práce) ; Zeman, Jan (oponent)
Polykonvexita je běžný předpoklad na hyperelastické hustoty uložené energie, který spolu s růstovými podmínkami zajišťuje slabou zdola polospojitost příslušného ener- getického funkcionálu. Předložená práce nejprve shrnuje známé výsledky o gradientní polykon- vexitě, již zavedli Benešová, Kružík a Schlömerkemperová v roce 2017. Je to vlastnost al- ternativní k polykonvexitě, která se lépe hodí např. k modelování slitin s tvarovou pamětí. Ústřední výsledek této diplomové práce je rozšíření pružného materiálového modelu s gradi- entně polykonvexním energetickým funkcionálem na elastoplastické těleso a důkaz existence energetického řešení přidružené rychlostně nezávislé evoluční úlohy, při čemž autor vycházel z předchozí práce Mielkeho, Francforta a Mainika. 1
Properties of weakly differentiable functions and mappings
Kleprlík, Luděk ; Hencl, Stanislav (vedoucí práce) ; Kružík, Martin (oponent) ; Onninen, Jani (oponent)
V předložené práci studujeme optimální podmínky na homeomorfis- mus f : Ω → Rn , která nám zaručí, že složení u ◦ f je slabě diferenco- vatelné a slabá derivace patří do nějakého vhodného prostoru funkcí. Ukážeme, má-li f konečnou distorzi a q-distorze Kq = |Df|q /Jf je dostatečně integrovatelná, potom operátor složení Tf (u) = u ◦ f zo- brazuje funkce z W1,q loc do prostoru W1,p loc a navíc platí známé řetízkové pravidlo. Pro důkaz tohoto tvrzení budeme muset nejdříve zjistit, kdy inverzní zobrazení f−1 zobrazuje množiny nulové míry na množiny nulové míry (tj. splňuje Luzinovu (N−1 ) podmínku). Ukážeme op- timální podmínky pro Sobolev-Lorentzův prostor WLn,q a pro Sobolev Orliczův prostor WLq log L, kde q ≥ n a α > 0 nebo 1 < q ≤ n a α < 0. Nalezneme také nutnou podmínku na homeomorfismus f pro funkce s derivací v prostoru funkcí invariantnímu vůči nerostoucímu přerovnání X blízko k Lq , t.j. X je q-škálující. 1
Properties of weakly differentiable functions and mappings
Kleprlík, Luděk
V předložené práci studujeme optimální podmínky na homeomorfis- mus f : Ω → Rn , která nám zaručí, že složení u ◦ f je slabě diferenco- vatelné a slabá derivace patří do nějakého vhodného prostoru funkcí. Ukážeme, má-li f konečnou distorzi a q-distorze Kq = |Df|q /Jf je dostatečně integrovatelná, potom operátor složení Tf (u) = u ◦ f zo- brazuje funkce z W1,q loc do prostoru W1,p loc a navíc platí známé řetízkové pravidlo. Pro důkaz tohoto tvrzení budeme muset nejdříve zjistit, kdy inverzní zobrazení f−1 zobrazuje množiny nulové míry na množiny nulové míry (tj. splňuje Luzinovu (N−1 ) podmínku). Ukážeme op- timální podmínky pro Sobolev-Lorentzův prostor WLn,q a pro Sobolev Orliczův prostor WLq log L, kde q ≥ n a α > 0 nebo 1 < q ≤ n a α < 0. Nalezneme také nutnou podmínku na homeomorfismus f pro funkce s derivací v prostoru funkcí invariantnímu vůči nerostoucímu přerovnání X blízko k Lq , t.j. X je q-škálující. 1
Diferencovatelnost inverzního zobrazení
Konopecký, František ; Hencl, Stanislav (vedoucí práce)
V práci dokazujeme výsledek, že pokud pro ∈ ℕ a ≥ 1 bilipschitzovské zobrazení náleží do +1, loc ∩ ,∞ loc , tak náleží do +1, loc i jeho inverze −1 . Obdobné tvrzení dokazujeme i pro prostory loc. K tomuto účelu je v práci vybudováno nové uspořádání -tých parciálních derivací do zobecněné Jakobiho matice, díky níž můžeme vhodně deri- vovat matice. Zobecněná Jakobiho matice je navržena tak, aby bylo zachováno řetízkové pravidlo a bylo možné derivovat i součin matic. 1

Národní úložiště šedé literatury : Nalezeno 12 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.